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A comparison is made between the theoretically predicted and the observed stratifica- 
tion in a container which is traversed by a prescribed flux of fluid. Two different 
geometries were used illustrating respectively a useful procedure for the control of a 
stratified laboratory system and a mechanism which is believed to be geophysically 
significant, e.g. for the control of the stratification in certain estuaries. The behaviour 
of the fluid system was in all cases characterized by an almost stagnant interior with 
a boundary layer a t  the non-horizontal wall of buoyancy-layer type. Agreement 
between theory and experiment was satisfactory within experimental errors, say 10 yo 
of the overall temperature difference. 

1. Introduction 
A theoretical prediction of the stratification in an almost-enclosed region is com- 

pared with experiments on two cases with different geometries and boundary con- 
ditions. The theoretical description is based on a slight generalization of the theory 
for strongly stratified fluids given by Walin (1971, hereafter referred to as I) allowing 
a constant flux of fluid to pass through the container. 

In the first case the container was cone-shaped, the conical surface being insulated 
and the base (facing upwards) held at  a constant prescribed temperature. The conical 
shape was chosen to illustrate the effect of a cross-sectional area which increases 
upwards. It is believed that the mechanism illustrated by this case is of importance for 
estuaries with vertical variation of the cross-sectional area. The net flux through our 
laboratory container should thus be a very simple model of the cross-isohaline mass 
flux induced by the supply of sea water from outside the estuary. In  the second case 
the container was a straight circular cylinder with a cylindrical wall of finite con- 
ductance. The theory and experiment for this case illustrate an exceedingly simple 
and efficient way to stratify a fluid in the laboratory. In fact the system described 
here is considerably simpler to handle in the laboratory than the system discussed in 
I. It is also believed %hat systems with essentially similar properties occur in many 
industrial applications. 

2. Theory for arbitrary geometry 
We shall study a strongly stratified fluid system, i.e. we expect 
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Boundary layer 

A=A 

FIGURE 1. The general system described by (2.4). A container with wall thickness d is surrounded 
by a medium with controlled temperature !?. Fluid is pumped through the container a t  a rate 
Mo and with an entrance temperature To. There is a transport M B  in the boundary layer which 
when added to the interior flow wrA(z) equals the inflow M,. A( z )  represents the cross-sectional 
area of the container. 

where TI is the interior temperature distribution, z is the vertical co-ordinate and 
(x,y) the horizontal co-ordinates. As in I we formulate the theory within the Bous- 
sinesq approximation and we impose the following conditions : 

K V  

NL2’ NL2 (Z . la ,  b )  

the latter to be applied on every non-horizontal boundary. N is the buoyancy 
frequency, defined by N 2  = gaAT/p,L, K and v are the diffusivities of heat and 
momentum, L is a typical length scale of the container, g is the gravitational 
acceleration, a is the coefficient of thermal expansion, pm is the density of the fluid 
at  some typical temperature, while s is a prescribed function of position on the 
boundary defined by the boundary condition on the temperature, viz.  

where 5 measures distance from the boundary. If the thermal conductivities of the 
wall and fluid are ,$ and k and the wall thickness is d ,  s may be approximately identified 
with &/kd while may be considered as a prescribed temperature outside the wall 
(see figure 1). 

As discussed in I, (2.1 a) restricts the diffusion of heat and momentum, giving rise 
to the boundary-layer character of the system, while (2.1 b )  restricts the thermal 
forcing, making the temperature difference across the boundary layer small compared 
with the temperature variations in the interior. The latter restriction is vital for the 
linearization of the boundary-layer equations, as was thoroughly discussed in I. 

aT/ac = s(T - P ) ,  (2.2) 
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Vnder these conditions and assuming a steady state, we have the following equations 
describing the diffusive interior and the buoyancy layer a t  the non-horizontal wall to 
lowest order (see I): 

TI = TI(z), (2.3a) 

ddT'/dz = Kd2TI/dZ2, (2.3b) 

M B  = K - A -  KS(TI-?) (~os8dTI/dz)-~dl, ( 2 . 3 ~ )  

(2.3d) 

where wI is the vertical velocity in the interior, MB(z)  is the total transport carried 
by the boundary layer through a horizontal surface at height z, and A(z)  is the area 
inside the container of that surface. The symbol $ dl represents a line integral around 
the surface with area A(z) and 8 is the angle between the inward normal to the boundary 
and the horizontal plane (-in < 8 < in). (Note that dA/dz may be written aa 
-f tanedl.) 

The last equation (2.3d), expressing continuity of volume, represents a slight 
generalization compared with I in that we allow a net flux l& to pass through the 
container. Experimentally this means that we have holes at the top and bottom of the 
region allowing the fluid to be pumped through the container. Furthermore the inlet 
temperature of this flux has to be controlled. 

Eliminating tol and ME from (2.3 b, c, d),  we obtain the following equation governing 
the interior temperature distribution: 

dz d f  
M, = ~ A ( z )  + MB, 

The solution of (2.4) in general requires boundary conditions at  the top and bottom 
of the region. [The boundary condition at the non-horizontal wall has already been 
taken care of in the derivation of (2.4).] 

The problem discussed in I is obtained from (2.4) if M, is put to zero. We thus find 
that including a net flux traversing the region has added a first derivative dTI/dz 
to the governing equation. This term changes the behaviour of the system in the limit 
of small interior diffusivity, i.e. when sL B 1. 

(i) A s  discussed in I, when M, = 0 and SL $ 1 the main part of the region is controlled - 

by the equation 
fsT&*dl = 0. 

This means that TI is determined independently for each level. Consequently we 
obtain 'boundary layers' close to the top and bottom of the region where the first 
term in (2.4) is of importance and the solution adjusts to the boundary conditions. 

(ii) When M, =/= 0 and sL B 1 we obtain in general 

We thus find a first-order differential equation governing the degenerate interior. The 
presence of the first derivative in (2 .6 )  makes it possible for solutions to this degenerate 
equation to satisfy one boundary condition, unlike solutions to (2.5). We thus expect 
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that one of the boundary layers present in the case M, = 0 should disappear. As may 
be shown by a straightforward boundary-layer analysis, ( 2 . 5 )  must satisfy the up- 
stream boundary condition (as may be intuitively expected). Consequently the 
influence of this boundary condition penetrates throughout the interior while the 
downstream condition influences only a narrow region. For a further discussion of 
this case see $4.  

3. Insulated side walls: flow in a cone 
We consider a container with an insulated non-horizontal wall, i.e. we put s = 0 

d2Tr d d T I  dTI 
in (2.4), which gives 

K A - + K - A - - M ~ -  dz2 dz dz dz = 0, 

or (3.2) 

Integrating twice and recalling that Mo is constant, we obtain 

(3.3) Tr=Clexp(J:sdz).  

The boundary-layer transport M E  and the interior vertical velocity to' are easily 
derived from (2 .3)  and become 

M B  = K(dA/dz )  (3.4) 

and w' = (No - HB)/A .  (3.5) 

The boundary-layer transport ME and the interior vertical velocity wI are thus 
independent of TI. 

The geometry of the experimental apparatus is illustrated in figure 2. The region 
under consideration was a haIf circular cone, i.e. it was enclosed by an upper horizontal 
surface, a conical surface and a vertical surface through the apex of the cone. The cone 
had a radius of 48.0 cm and the distance between the apex and the lid was 6.0 cm. 
The conical and the vertical surfaces were insulated (s = 0) ,  while the horizontal 
surface was covered by a thin glass lid facing a constant-temperature bath with 
temperature Tl. The insulation of the conicaI surface was made of Styrofoam of 
minimum thickness 4-Ocm. The vertical wall was made of Plexiglas of thickness 
2.0 cm, while the glass lid had a thickness of 0.4 cm. A constant net flux M, with inlet 
temperature To was forced upwards through the container. In  all our experiments 
To was lower than TI ,  which is obviously a necessary condition for a stable stratification 
to occur, i.e. for our theory to be applicable. Thus we have 

A ( z )  = A0z2/H2, ( 3 . 6 ~ )  

TI = To at z = 0,  (3 .6b )  

dTI /dz  = -sl(TI-Tl) a t  z = H ,  ( 3 . 6 ~ )  

where A ,  is the area of the upper boundary and H is the total height of the region. 
s1 is approximately determined by the thickness d of the glass lid and the heat con- 
ductivities of the glass and the fluid. 
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T= To 

FIGFRE 2. The experiment with a cone-shaped region. The sloping side is insulated and on the 
top there is a constant-temperature bath with temperature TI. As illustrated, the interior tem- 
perature distribution will have an inflexion point which is shifted upwards when M,, is increased. 
At this level the interior vertical velocity wI is zero. 

Applying (3.6) to our solution (3.3), we obtain 

TI- To = AT * exp ( - H * / z ) ,  ( 3 . 7 ~ )  

where AT* = (Tl-To)(1+H*/slH2)-1exp(H*/H), (3.7b) 

H *  = M 0 H 2 / d O .  ( 3 . 7 4  

About ten experiments have been performed with different values of the external 
parameters Mo and Tl-To. In  figure 3 we have collected the results from all our 
experiments in a diagram showing (TI- To)/AT* as a function of z /H*  (which in view 
of (3.7) should give us a single curve). Note that the value of z /H* corresponding to 
the top of the region (i.e. z = H )  varies between individual experiments. 
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FIGURE 3. Temperature w. depth in non-dimensional form from experiments and theory (solid 
curve) for a conical container. The scales AT * and H * are defined by (3 .7b ,  c ) .  Note that the level 
z = H of the top boundary corresponds to different values of H / H *  for different experiments. 
The error bars on the predicted curve, illustrating the errors caused by uncertain conditions and 
external perturbations, have been calculated for z = +H = 3 cm with three different flow rates: 
M ,  = 0.2, 0.85 and 1.5cmS/s. 

From (2 .3b ) ,  ( 3 . 4 )  and (3 .5 )  we reach the following conclusions. 
(i) The sign of the vertical velocity cul in the interior depends on whether or not 

the boundary-layer flux M B  exceeds the prescribed net flux M,. 
(ii) The sign of d2TI/dz2 is determined by the sign of wl. 
(iii) At the level z = +H* we have M B  = M,, i.e. ~Ivanishes ,  and the temperature 

profile has an inflexion point (a 'thermocline '). This level will however fall outside the 
region if H / H *  < 4. 

In  t,he experiment we could observe through the vertical part of the side wall the 
surface on which M B  = M, by injecting dye into the incoming water. This surface 
then stayed free of dye longer than any other part of the region. The circulation is 
illustrated in figure 2 .  It should be noted that the velocities in the interior are exceed- 
ingly small. 

In the experiments M, was varied over the range 0.2cm3/s < M, < 1-5cm3/s, 
which corresponds to 0.5 < H / H *  < 4.1. By including time dependence in the analysis, 
it is easily shown that the time interval 7 required for a steady state to be established 
is the so-called diffusion time, i.e. 7 - H ~ / K .  In  fact this remains true whenever the 
side walls are sufficiently well insulated in the sense that sL 5 1. In  our experiment 
we thus had T - 7 h. 
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4. The cylinder or an efficient way of stratifying a fluid 
In this experiment we used a circular cylinder with its axis vertical. It was driven 

thermally by the vertical boundary (of constant thickness), outside which the tem- 
perature (Tl) was held constant. The whole container was made of Plexiglas. The 
rsdius of the cylinder was 7.0 cm and its height 33 ern. The thickness of the vertical 
wall was 0.5 cm. The bottom was insulated with a 5.0 cm thick sheet of Styrofoam. The 
lid had a thickness of 1 em. As in the experiment with the cone a net upward flux M, 
was pumped through the container, the inflow being held at a constant temperature 
To (see figure 4 a ) .  The lid was kept at approximately the temperature of the surrounding 
air ( - T,). 

We thus have s = so, e = 0, A = A ,  = T R ~ ,  (4 .1 )  

which when substituted in (2 .4)  give 

d2TI dTI  
K A o w -  M 0 - - ~ T R S , K ( T ~ - T ~ )  dz = 0. 

Boundary conditions on (4 .2 )  are obtained from continuity of heat flux. 
At the lower boundary, where inflow occurs, we have 

A , ( p c d T I -  k d T I / d z )  = A ,  &P(T, - TI)  + pcMo To at z = 0, 

where the left-hand side represents the heat flux in the fluid at  z = 0 and the right- 
hand side the flux in the boundary itself, pc being the heat capacity/unit volume. We 
have thus assumed that the outside of the boundary is heId a t  the same temperature 
as the inflowing water, a limitation which can easily be relaxed. Simplifying, we obtain 

dT'/dz = (sL + M,/KA,) (TI- To), ( 4 . 3 ~ )  

where sL = $/kd represents the heat conductivity of the lower boundary. (In the 
experiment s, was small.) 

Considering now the upper boundary we have in a similar way 

A 0 ( p c d T r -  kdTZ/dz) = A ,  Ld-l(TI-- T,) t pcMo TI a t  z = H ,  

where T, is the temperature outside the upper boundary. Note that (for obvious 
physical reasons) TI appears in the last term on the right-hand side instead of T,. 
Simplifying, we obtain 

dTz /dz  = sT(TI- T,), ( 4 . 3 b )  

where sT represents the thermal properties of the upper boundary. We conclude that 
the boundary condition a t  the outflow boundary is identical to the case with M, = 0. 

Equation (4 .2)  has the solution 

TI-  TI = C, exp a1 z + (7,exp a,z, (4.4a) 

where 

MO a - - [ l + ( l +  - ~ K A ,  

(4 .4b )  

( 4 . 4 4  
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( 6 )  

FIG~RES 4 (a, b ) .  For legend see opposite. 
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( C )  

FIGVRE 4. The cylinder and its dynamics. (a)  shows that the vertical side wall is surrounded by a 
constant-temperature bath with temperature TI. The inflow M, of temperature To was pumped 
through the insulated bottom. A ,  is the cross-sectional area and W I  the interior vertical velocity. 
( b )  illustrates the temperature distribution with a very small net flux M, and modest influence 
of vertical heat conduction. (c) illustrates the temperature distribution when M, is larger and 
vertical diffusion is unimportant except very close to the top. Our experiments were all in the 
range illustrated by (c). 

and the constants C;: and C2 should be determined from the boundary conditions (4 .3 ) .  
The behaviour of (4 .4 )  in different typical cases is illustrated in figures 4 ( b )  and (c). 
As shown, the effect of increasing M, is to stretch out the lower exponential (the one 
which decays upwards) and squeeze the upper exponential. In  the case illustrated in 
figure 4 ( c )  the lower exponential dominates the solution except in a very thin layer 
a t  the top of the region. The upper boundary condition influences the solution only 
in this thin layer, as pointed out at  the end of $ 2 .  

Simplified description of experimentally important cases 

In  the limit M, H / K A ,  9 1, M, N RHs, K (4.5) 

(4 .2)  and ( 4 . 3 ~ )  degenerate to 

M,dTI/dz+ 2 n R s o ~ ( T I - T 1 )  = 0,  

TI-To = 0 a t  z = 0. 

( 4 . 6 ~ )  

(4.6b) 

Equations (4 .6 )  determine a solution which is valid everywhere except in a top layer 
of thickness A ,  KIM,. The top boundary condition influences only this thin layer and 
should thus not be taken into account together with the degenerate equation ( 4 . 6 ~ ) .  
Note that the form (4 .6b)  of the lower boundary condition results from (4.6) even if 
the lower boundary is completely insulated (i.e. if sL = 0). The solution to (4.6) 

(4 .7a)  
becomes TI-  T, = (To - Tl)  exp a, 2, 

where a1 = 2nRs, KIM,. (4.7b) 

From ( 2 . 3 ~ )  we have MB = - K S , ~ ~ R ( T I - T J  (dTI/dz)- l .  (4.8) 
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FIGURE 5. Temperature vs. depth in non-dimensional form from experiments and theory (solid 
curve) for a cylindrical container. To is the temperature of the inflow, TI is the interior temperature 
and TI is the temperature outside the side walls of the container. The theoretical predktioh has 
been obtained from (4.7). The error bars have been calculated for z = 3H = 17.5cm with three 
different flow rates: Ma = 0.5, 1.5 and 2.5cmS/s. 

We note that the boundary-layer transport associated with (4.7) is non-divergent 
(i.e. dMB/dz = 0).  In  fact we have within the framework of (4.5) 

MB p wIA or MB 21 M,, 

i.e. the vertical transport is dominated by the boundary-layer contribution. 

time as discussed in I. In our experiment it is about 5 h. 

diction given by (4.7). In  the experiment Mo was varied over the range 

The adjustment time r is given by 7 - H / K s ,  which is much less than the ‘diffusion’ 

In  figure 5 all the measured data are presented together with the theoretical pre- 

0.5 cm3/s c M, < 2.5 cm3/s, 

which corresponds to 0-5 < -a,H < 2.5, 

The thickness of the region influenced by the upper boundary condition ( N a;’) was 
thus very small compared with H in the experiments. 

80 c a2H < 380. 

5. Discussion of errors 
The uncertainty in the theoretical prediction is due to  uncertain external conditions 

and external perturbations. We estimate the variation in Mo to  be at  most 10 yo. The 
external temperatures To and TI were estimated to vary within 1 yo of the prescribed 
temperature difference. 

We neglect variations in wall thickness in both experiments. In  the case of the cone, 
there was some mixing near the apex induced by the inflow. This forced us to use the 
measured temperature Th at the level z = h (=  0.5 cm) just above the apex as our 
boundary condition. The mixing was visualized by injecting dye into the incoming 
water and observing it through the thick vertical Plexiglas wall. 
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The errors are shown in figures 3 and 5 by error bars in the predicted curve. The 
errors have been calculated for z = 4H with three different flow rates in both experi- 
ments. There is a good agreement between theory and experiment in both cases. But, 
especially in the experiment with the cylinder, there is a systematic shift of the 
observations towards lower temperatures compared with the predicted values. 

6. Main conclusions 
The theory for strongly stratified fluids and the associated boundary layers has been 

verified through comparison with two widely different but simple experimental 
set-ups. 

The first case, involving flow in a cone with insulated side walls, has some re- 
semblance to the flow in an estuary. The importance of the topography for the vertical 
flux through the system and for the formation of a thermocline-like temperature 
structure is demonstrated. 

The second case illustrates a very simple method of producing and maintaining a 
stratified system in the laboratory or elsewhere. It is believed that the principle 
demonstrated could be useful in industrial applications when accurate control of the 
temperature field is required. 

We appreciate the assistance given by the staff at the Institute, especially Kristina 
Hansson, Agneta Hilding and Ulf Jonasson. 
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